Abstract

BackgroundThis study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population.Methods and FindingsTwenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both 99mTc exametazime to measure cerebral blood flow (CBF) and 123I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients.ConclusionsOverall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.

Highlights

  • Traumatic Brain Injury (TBI) is a major public health concern

  • Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild traumatic brain injury (TBI) symptoms

  • Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario

Read more

Summary

Introduction

Traumatic Brain Injury (TBI) is a major public health concern. the medical community has long understood the potential detriment of head injury [1], there has been a resurgence of interest regarding the importance of TBI in individuals participating in contact sports, patients with various psychological or neurological dysfunction, and the population in general. Since TBI can be heterogeneous in terms of its definition, effects, and prognosis, it is often unclear how a given TBI or multiple TBIs in the same individual will affect the brain’s physiology and how such changes may affect clinical symptoms [5,6] For those individuals managing patients with a history of TBI and persistent symptoms, knowledge of the underlying brain physiology may be highly beneficial for understanding the effects of the TBI and perhaps even target future therapy. The possible pathophysiological mechanism may be related to neurogenic inflammation characterized by locally increased blood flow, plasma protein leakage from blood vessels, mast cell degranulation, and platelet aggregation [13] This inflammation can be related to the head injury process itself or may be related to direct injury to the trigeminal afferent nerves or to the leptomeningeal or cerebrovascular structures that are innervated by trigeminal nerves [14]. The goal was to determine how these two different scan might be used and compared to each other in this patient population

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call