Abstract

BackgroundThe treatment for herpetic-related neuralgia focuses on symptom control by use of antiviral drugs, anticonvulsants, and tricyclic antidepressants. We aimed to explore the clinical characteristics associated with medication responsiveness, and to build a classifier for identification of patients who have risk of inadequate pain management.MethodsWe recruited herpetic-related neuralgia patients during a 3-year period. Patients were stratified into a medication-resistant pain (MRP) group when the pain decrease in the visual analogue scale (VAS) is < 3 points, and otherwise a medication-sensitive pain (MSP) group. Multivariate logistic regression was performed to determine the factors associated with MRP. We fitted four machine learning (ML) models, namely logistic regression, random forest, supporting vector machines (SVM), and naïve Bayes with clinical characteristics gathered at admission to identify patients with MRP.ResultsA total of 213 patients were recruited, and 132 (61.97%) patients were diagnosed with MRP. Subacute herpes zoster (HZ) (vs. acute, OR 8.95, 95% CI 3.15–29.48, p = 0.0001), severe lesion (vs. mild lesion, OR 3.84, 95% CI 1.44–10.81, p = 0.0084), depressed mood (unit increase OR 1.10, 95% CI 1.00–1.20, p = 0.0447), and hypertension (hypertension, vs. no hypertension, OR 0.36, 95% CI 0.14–0.87, p = 0.0266) were significantly associated with MRP. Among four ML models, SVM had the highest accuracy (0.917) and receiver operating characteristic-area under the curve (0.918) to discriminate MRP from MSP. Phase of disease is the most important feature when fitting ML models.ConclusionsClinical characteristics collected before treatment could be adopted to identify patients with MRP.Supplementary InformationThe online version contains supplementary material available at 10.1007/s40122-021-00303-7.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.