Abstract

BackgroundAll spinocerebellar ataxias (SCAs) are rare diseases. SCA1, 2, 3 and 6 are the four most common SCAs, all caused by expanded polyglutamine-coding CAG repeats. Their pathomechanisms are becoming increasingly clear and well-designed clinical trials will be needed.MethodsTo characterize the clinical manifestations of spinocerebellar ataxia (SCA) 1, 2, 3 and 6 and their natural histories in the United States (US), we conducted a prospective multicenter study utilized a protocol identical to the European consortium study, using the Scale for the Assessment and Rating of Ataxia (SARA) score as the primary outcome, with follow-ups every 6 months up to 2 years.ResultsWe enrolled 345 patients (60 SCA1, 75 SCA2, 138 SCA3 and 72 SCA6) at 12 US centers. SCA6 patients had a significantly later onset, and SCA2 patients showed greater upper-body ataxia than patients with the remaining SCAs. The annual increase of SARA score was greater in SCA1 patients (mean ± SE: 1.61 ± 0.41) than in SCA2 (0.71 ± 0.31), SCA3 (0.65 ± 0.24) and SCA6 (0.87 ± 0.28) patients (p = 0.049). The functional stage also worsened faster in SCA1 than in SCA2, 3 and 6 (p = 0.002).ConclusionsThe proportions of different SCA patients in US differ from those in the European consortium study, but as in the European patients, SCA1 progress faster than those with SCA2, 3 and 6. Later onset in SCA6 and greater upper body ataxia in SCA2 were noted. We conclude that progression rates of these SCAs were comparable between US and Europe cohorts, suggesting the feasibility of international collaborative clinical studies.

Highlights

  • All spinocerebellar ataxias (SCAs) are rare diseases

  • Genotypes Genotyping was confirmed in DNA samples from 287 of the 345 subjects, including 50 SCA1, 60 SCA2, 111 SCA3 and 66 SCA6 patients

  • Sequence analysis showed 98.8% concordance with repeat number determined by fragment sizing; the discordance by 1-3 repeats was found in seven samples with long SCA3 alleles

Read more

Summary

Introduction

SCA1, 2, 3 and 6 are the four most common SCAs, all caused by expanded polyglutamine-coding CAG repeats. Their pathomechanisms are becoming increasingly clear and well-designed clinical trials will be needed. SCA1, 2, 3, 6, 7 and 17, and dentatorubral pallidoluysian atrophy are caused by an expansion of a polyglutamine (polyQ)-coding CAG repeat within the respective genes [1,2,3]. SCAs are all rare, with an estimated prevalence of less than 4/100,000 for each SCA [4,5,6,7,8], SCA1, 2, 3 and 6 are the most common among all SCAs. Currently available data suggest that these SCAs are caused by a toxic gain of function by the expanded polyQ in the context of different proteins coded by the respective genes.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call