Abstract

PurposeTo estimate the overall spatial distortion on clinical patient images for a 0.35 T MR‐guided radiotherapy system.MethodsTen patients with head‐and‐neck cancer underwent CT and MR simulations with identical immobilization. The MR images underwent the standard systematic distortion correction post‐processing. The images were rigidly registered and landmark‐based analysis was performed by an anatomical expert. Distortion was quantified using Euclidean distance between each landmark pair and tagged by tissue interface: bone‐tissue, soft tissue, or air‐tissue. For baseline comparisons, an anthropomorphic phantom was imaged and analyzed.ResultsThe average spatial discrepancy between CT and MR landmarks was 1.15 ± 1.14 mm for the phantom and 1.46 ± 1.78 mm for patients. The error histogram peaked at 0–1 mm. 66% of the discrepancies were <2 mm and 51% <1 mm. In the patient data, statistically significant differences (p‐values < 0.0001) were found between the different tissue interfaces with averages of 0.88 ± 1.24 mm, 2.01 ± 2.20 mm, and 1.41 ± 1.56 mm for the air/tissue, bone/tissue, and soft tissue, respectively. The distortion generally correlated with the in‐plane radial distance from the image center along the longitudinal axis of the MR.ConclusionSpatial distortion remains in the MR images after systematic distortion corrections. Although the average errors were relatively small, large distortions observed at bone/tissue interfaces emphasize the need for quantitative methods for assessing and correcting patient‐specific spatial distortions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call