Abstract
To determine whether AI systems that recognize cephalometric landmarks can apply to various patient groups and to examine the patient-related factors associated with identification errors. The present retrospective cohort study analysed digital lateral cephalograms obtained from 1785 Japanese orthodontic patients. Patients were categorized into eight subgroups according to dental age, cleft lip and/or palate, orthodontic appliance use and overjet. An AI system that automatically recognizes anatomic landmarks on lateral cephalograms was used. Thirty cephalograms in each subgroup were randomly selected and used to test the system's performance. The remaining cephalograms were used for system learning. The success rates in landmark recognition were evaluated using confidence ellipses with α=0.99 for each landmark. The selection of test samples, learning of the system and evaluation of the system were repeated five times for each subgroup. The mean success rate and identification error were calculated. Factors associated with identification errors were examined using a multiple linear regression model. The success rate and error varied among subgroups, ranging from 85% to 91% and 1.32mm to 1.50mm, respectively. Cleft lip and/or palate was found to be a factor associated with greater identification errors, whereas dental age, orthodontic appliances and overjet were not significant factors (all, P<.05). Artificial intelligence systems that recognize cephalometric landmarks could be applied to various patient groups. Patient-oriented errors were found in patients with cleft lip and/or palate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.