Abstract

Head and neck squamous cell carcinoma (HNSCC) represents one of the most malignant cancers worldwide, with poor survival. Experimental evidence implies that glycolysis/hypoxia is associated with HNSCC. In this study, we aimed to construct a novel glycolysis-/hypoxia-related gene (GHRG) signature for survival prediction of HNSCC. A multistage screening strategy was used to establish the GHRG prognostic model by univariate/least absolute shrinkage and selection operator (LASSO)/step multivariate Cox regressions from The Cancer Genome Atlas cohort. A nomogram was constructed to quantify the survival probability. Correlations between risk score and immune infiltration and chemotherapy sensitivity were explored. We established a 12-GHRG mRNA signature to predict the prognosis in HNSCC patients. Patients in the high-risk score group had a much worse prognosis. The predictive power of the model was validated by external HNSCC cohorts, and the model was identified as an independent factor for survival prediction. Immune infiltration analysis showed that the high-risk score group had an immunosuppressive microenvironment. Finally, the model was effective in predicting chemotherapeutic sensitivity. Our study demonstrated that the GHRG model is a robust prognostic tool for survival prediction of HNSCC. Findings of this work provide novel insights for immune infiltration and chemotherapy of HNSCC, and may be applied clinically to guide therapeutic strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call