Abstract

Trypanosomiasis has been recognized as a scourge in sub-Saharan Africa for centuries. The disease, caused by protozoan parasites of the Trypanosoma genus, is a major cause of mortality and morbidity in animals and man. Human African trypanosomiasis (HAT), or sleeping sickness, results from infections with T. brucei (b.) gambiense or T. b. rhodesiense with T. b. gambiense accounting for over 95% of infections. Historically there have been major epidemics of the infection, followed by periods of relative disease control. As a result of concerted disease surveillance and treatment programmes, implemented over the last two decades, there has been a significant reduction in the number of cases of human disease reported. However, the recent identification of asymptomatic disease carriers gives cause for some concern. The parasites evade the host immune system by switching their surface coat, comprised of variable surface glycoprotein (VSG). In addition, they have evolved a variety of strategies, including the production of serum resistance associated protein (SRA) and T. b. gambiense-specific glycoprotein (TgsGP) to counter host defense molecules. Infection with either disease variant results in an early haemolymphatic-stage followed by a late encephalitic-stage when the parasites migrate into the CNS. The clinical features of HAT are diverse and non-specific with early-stage symptoms common to several infections endemic within sub-Saharan Africa which may result in a delayed or mistaken diagnosis. Migration of the parasites into the CNS marks the onset of late-stage disease. Diverse neurological manifestations can develop accompanied by a neuroinflammatory response, comprised of astrocyte activation, and inflammatory cell infiltration. However, the transition between the early and late-stage is insidious and accurate disease staging, although crucial to optimize chemotherapy, remains problematic with neurological symptoms and neuroinflammatory changes recorded in early-stage infections. Further research is required to develop better diagnostic and staging techniques as well as safer more efficacious drug regimens. Clearer information is also required concerning disease pathogenesis, specifically regarding asymptomatic carriers and the mechanisms employed by the trypanosomes to facilitate progression to the CNS and precipitate late-stage disease. Without progress in these areas it may prove difficult to maintain current control over this historically episodic disease.

Highlights

  • Human African trypanosomiasis (HAT), known a sleeping sickness, is one of the world’s classical “neglected diseases.” Transmitted by the bite of the blood-sucking tsetse fly of the Glossina genus, HAT is caused by protozoan parasites of the Trypanosoma genus [1,2,3]

  • There are two clinical variants of HAT, the West African form caused by Trypanosoma brucei gambiense and the East African form caused by T. b. rhodesiense parasites [5]

  • T. b. gambiense disease is more common and causes about 95–97% of the reported HAT cases, with T. b. rhodesiense cases constituting the other 3–5% of reported cases, it has been estimated that the latter disease is responsible for about 18% of the total risk of infection throughout sub-Saharan Africa [6] as well as being the cause of 72% of cases that occur in European and US travelers to endemic regions of Africa for the primary purpose of visiting the African game parks [7]

Read more

Summary

Clinical and Neuropathogenetic Aspects of Human African Trypanosomiasis

Reviewed by: Stefan Magez, Vrije Universiteit Brussel, Belgium Michael Duszenko, University of Tubingen, Germany. Infection with either disease variant results in an early haemolymphatic-stage followed by a late encephalitic-stage when the parasites migrate into the CNS. The clinical features of HAT are diverse and non-specific with early-stage symptoms common to several infections endemic within sub-Saharan Africa which may result in a delayed or mistaken diagnosis. Clearer information is required concerning disease pathogenesis, regarding asymptomatic carriers and the mechanisms employed by the trypanosomes to facilitate progression to the CNS and precipitate late-stage disease. Without progress in these areas it may prove difficult to maintain current control over this historically episodic disease

INTRODUCTION
BIOLOGICAL CONSIDERATIONS
CLINICAL FEATURES
NEUROPATHOGENESIS OF HAT
DIAGNOSIS OF INFECTION AND DISEASE STAGING
CURRENT TREATMENT OF HAT
Findings
PROSPECTS FOR EVENTUAL CONTROL OF HAT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call