Abstract

Background: Transcranial Magnetic Stimulation (TMS) is a technique based on the principles of electromagnetic induction. It applies pulses of magnetic radiation that penetrate the brain tissue, and it is a non-invasive, painless, and practically innocuous procedure. Previous studies advocate the therapeutic capacity of TMS in several neurodegenerative and psychiatric processes, both in animal models and in human studies. Its uses in Parkinson's disease, Alzheimer's disease and in Huntington's chorea have shown improvement in the symptomatology and in the molecular profile, and even in the cellular density of the brain. Consequently, the extrapolation of these TMS results in the aforementioned neurodegenerative disease to other entities with etiopathogenic and clinical analogy would raise the relevance and feasibility of its use in multiple sclerosis (MS). The overall objective will be to demonstrate the effectiveness of the TMS in terms of safety and clinical improvement, as well as to observe the molecular changes in relation to the treatment.Methods and Design: Phase II clinical trial, unicentric, controlled, randomized, single blind. A total of 90 patients diagnosed with relapsing-remitting multiple sclerosis (RRMS) who meet all the inclusion criteria and do not present any of the exclusion criteria that are established and from which clinically evaluable results can be obtained. The patients included will be assigned under the 1:1:1 randomization formula, constituting three groups for the present study: 30 patients treated with natalizumab + white (placebo) + 30 patients treated with natalizumab + TMS (1 Hz) + 30 patients treated with natalizumab + TMS (5 Hz).Discussion: Results of this study will inform on the efficiency of the TMS for the treatment of MS. The expected results are that TMS is a useful therapeutic resource to improve clinical status (main parameters) and neurochemical profile (surrogate parameters); both types of parameters will be checked.Ethics and Dissemination: The study is approved by the Local Ethics Committee and registered in https://clinicaltrials.gov (NCT04062331). Dissemination will include submission to a peer-reviewed journal, patients, associations of sick people and family members, healthcare magazines and congress presentations.Trial Registration: ClinicalTrials.gov ID: NCT04062331 (registration date: 19th/ August/2019).Version Identifier: EMTr-EMRR, ver-3, 21/11/2017.

Highlights

  • Transcranial magnetic stimulation (TMS) is based on the principles of Maxwell’s electromagnetism, by which an electric field is capable of generating a magnetic field perpendicular to it and vice versa

  • The main goal is to demonstrate the therapeutic effect of TMS in patients with multiple sclerosis (MS) by means of measurement of clinical changes according to the Expanded Disability Status Scale (EDSS)

  • To identify the changes induced by the application of TMS (1 Hz/5 Hz) on neurochemical biomarkers, oxidative damage, acute phase reactants, and in differential expression proteomic profiles, in patients affected by MS

Read more

Summary

Introduction

Transcranial magnetic stimulation (TMS) is based on the principles of Maxwell’s electromagnetism, by which an electric field is capable of generating a magnetic field perpendicular to it and vice versa. This peculiar therapeutic strategy with more than two decades of application was authorized in 2008 for the treatment of refractory major depression by the Food and Drug Administration (FDA) of the United States and later by the European Medicines Agency (EMEA). Some studies have shown a certain degree of improvement when using TMS to reduce neuropathic pain [16, 17] or the severity of spasticity subsequent to an ischemic stroke [18,19,20,21,22]. The overall objective will be to demonstrate the effectiveness of the TMS in terms of safety and clinical improvement, as well as to observe the molecular changes in relation to the treatment

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.