Abstract
Peritonitis due to gram-negative bacilli (GNB), particularly nonfermenting GNB (NF-GNB), is a serious complication of peritoneal dialysis with a low resolution rate. Beyond the patient’s condition, microbiological properties such as antimicrobial resistance, biofilm production and other virulence factors can explain the poor outcomes. This study aimed to evaluate the influence of patient condition, microbiological characteristics, including biofilm production, and treatment on peritonitis outcome. We reviewed the records of 62 index episodes caused by NF-GNB that occurred between 1997 and 2015 in our center. The etiologies were species of Pseudomonas (51.6%), Acinetobacter (32.2%), and other NF-GNB (16.1%). There was a high (72.9%) proportion of biofilm producer lineages. The in vitro susceptibility rate of Pseudomonas spp. to amikacin, ciprofloxacin, and ceftazidime was significantly greater than that of Acinetobacter spp. and other species; however, there was a similar low resolution rate (< 45%) among the episodes attributable to them. Preexisting exit-site infection was independently associated with nonresolution. No other factor, including biofilm production, was associated with the outcome. The higher in vitro susceptibility of Pseudomonas compared to other NF-GNB that presented a similar resolution rate suggests that bacterial virulence factors such as biofilms can act in concert, thereby worsening the outcome.
Highlights
Peritonitis due to gram-negative bacilli (GNB), nonfermenting GNB (NF-GNB), is a serious complication of peritoneal dialysis with a low resolution rate
Based on the exclusion criteria, we studied 62 index cases of peritonitis caused by NF-GNB from 62 adult patients (Fig. 1)
In the case of bacteria, despite the indisputable role of bacterial resistance, this does not seem to be the only property influencing the outcomes; this holds true for peritoneal dialysis (PD)-related peritonitis
Summary
Peritonitis due to gram-negative bacilli (GNB), nonfermenting GNB (NF-GNB), is a serious complication of peritoneal dialysis with a low resolution rate. Beyond the patient’s condition, microbiological properties such as antimicrobial resistance, biofilm production and other virulence factors can explain the poor outcomes. The in vitro susceptibility rate of Pseudomonas spp. to amikacin, ciprofloxacin, and ceftazidime was significantly greater than that of Acinetobacter spp. and other species; there was a similar low resolution rate (< 45%) among the episodes attributable to them. The higher in vitro susceptibility of Pseudomonas compared to other NF-GNB that presented a similar resolution rate suggests that bacterial virulence factors such as biofilms can act in concert, thereby worsening the outcome. Gram-positive cocci are the main etiology of PD peritonitis worldwide, while episodes due to gram-negative bacilli (GNB) usually present greater severity and lower resolution r ates[9,10]. Pseudomonas spp. are the most isolated NF-GNB and Scientific Reports | (2021) 11:12248
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.