Abstract

Background. Using external robotic tools in rehabilitation of patients after stroke could activate neuroplasticity mechanisms, thus reducing the ischemic area and improving the neurological outcome of the disease.Aim. To evaluate the effectiveness of early rehabilitation of stroke patients in Tomsk Regional Stroke Center using assistive robotic tools by correlational analysis of clinical and laboratory biomarkers of brain neuroplasticity.Materials and methods. The study included 68 patients who suffered from stroke of the middle cerebral artery. Early rehabilitation was carried out in Tomsk Regional Stroke Center using assistive robotic tools according to the protocol. Neurotrophic factors in blood serum were measured by the enzyme-linked immunosorbent assay. The severity of neurological disorders was characterized based on the Fugl – Meyer assessment scale (FMA).Results. The clinical effectiveness of early motor rehabilitation in Tomsk Regional Stroke Center is confirmed by the statistically significant increase on the FMA scale by 5.2 ± 2.4 points (p = 0.008). Positive association between neurotrophic factors in blood serum and FMA total score enables to consider the resulting data as an evidence of neuroplasticity activation associated with the use of robotic electromechanical technologies. 

Highlights

  • Using external robotic tools in rehabilitation of patients after stroke could activate neuroplasticity mechanisms, reducing the ischemic area and improving the neurological outcome of the disease

  • Rehabilitation was carried out in Tomsk Regional Stroke Center using assistive robotic tools according to the protocol

  • Neurotrophic factors in blood serum were measured by the enzyme-linked immunosorbent assay

Read more

Summary

ОРИГИНАЛ Н Е СТАТ И RI INAL AR ICLES

Королева Е.С.1, Алифирова В.М.1, Бразовская Н.Г.1, Плотников Д.М.1, Левчук Л.А.2, Бойко А.С.2, Запекин С.П.1, Семененко А.В.1, Катаева Н.Г. Ïðèìåíåíèå âíåøíèõ ðîáîòèçèðîâàííûõ óñòðîéñòâ íà ýòàïå ðàííåé ðåàáèëèòàöèè ïàöèåíòîâ ñ èøåìè÷åñêèì èíñóëüòîì àêòèâèðóåò ìåõàíèçìû íåéðîïëàñòè÷íîñòè, óìåíüøàÿ òåì ñàìûì îáúåì çîíû èøåìèè è óëó÷øàÿ íåâðîëîãè÷åñêèå èñõîäû çàáîëåâàíèÿ. Öåëü èññëåäîâàíèÿ – îöåíèòü ýôôåêòèâíîñòü ðàííåé ðåàáèëèòàöèè ïàöèåíòîâ ñ èøåìè÷åñêèì èíñóëüòîì â Ðåãèîíàëüíîì ñîñóäèñòîì öåíòðå ã. Òîìñêà (ÐÑÖ ÒÎÊÁ) ñ ïðèìåíåíèåì âñïîìîãàòåëüíûõ ðîáîòèçèðîâàííûõ ìåõàíèçìîâ ïóòåì êîððåëÿöèîííîãî àíàëèçà êëèíèêî-ëàáîðàòîðíûõ ìàðêåðîâ ïëàñòè÷íîñòè ìîçãà. Ðàííÿÿ ðåàáèëèòàöèÿ ïðîâîäèëàñü â ÐÑÖ ÒÎÊÁ ñ ïðèìåíåíèåì âñïîìîãàòåëüíûõ ðîáîòèçèðîâàííûõ ìåõàíèçìîâ ñîãëàñíî ïðîòîêîëó. Êëèíè÷åñêóþ ýôôåêòèâíîñòü ðàííåé ìîòîðíîé ðåàáèëèòàöèè â ÐÑÖ ÒÎÊÁ ïîäòâåðæäàåò ñòàòèñòè÷åñêè çíà÷èìûé ïðèðîñò ïî øêàëå FMA íà (5,2 ± 2,4) áàëëîâ, p = 0,008. Êëèíèêî-ëàáîðàòîðíàÿ îöåíêà ýôôåêòèâíîñòè ðàííåé ðåàáèëèòàöèè ïàöèåíòîâ ñ èíñóëüòîì ñ ïðèìåíåíèåì âñïîìîãàòåëüíûõ ðîáîòèçèðîâàííûõ ìåõàíèçìîâ. Koroleva E.S.1, Alifirova V.M.1, Brazovskaya N.G.1, Plotnikov D.M.1, Levchuk L.A.1, Boyko A.S.1, Zapekin S.G.1, Semenenko A.V.1, Kataeva N.G.1, Ivanova S.A. 1, 2

Materials and methods
Results
Оригинальные статьи
МАТЕРИАЛЫ И МЕТОДЫ
Ñåíñîðíàÿ ôóíêöèÿ Sensory function
Вклад авторов
Author contributions
Сведения об авторах
Authors information
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call