Abstract

BackgroundCarcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a multifunctional Ig-like cell adhesion molecule that has a wide range of biological functions. According to previous reports, serum CEACAM1 is dysregulated in different malignant tumours and associated with tumour progression. However, the serum CEACAM1 expression in non-small-cell lung carcinomas (NSCLC) is unclear. The different expression ratio of CEACAM1-S and CEACAM1-L isoform has seldom been investigated in NSCLC. This research is intended to study the serum CEACAM1 and the ratio of CEACAM1-S/L isoforms in NSCLC.MethodsThe expression of the serum CEACAM1 was determined by enzyme-linked immunosorbent assay. The protein expression and the location of CEACAM1 in tumours were observed by immunohistochemical staining. The CEACAM1 mRNA levels in tumour and normal adjacent tissues were measured using quantitative real-time PCR, and the expression patterns and the rate of CEACAM1-S and CEACAM1-L were analysed by reverse transcription-PCR.ResultsSerum CEACAM1 levels were significantly higher in NSCLC patients compared with that from normal healthy controls (P <0.0001). 17 patients (81%) among 21 showed high expression of CEACAM1 by immunohistochemical staining. Although no significant differences were found between tumour and normal tissues on mRNA expression levels of CEACAM1 (P >0.05), the CEACAM1-S and the CEACAM1-S/L (S: L) ratios were significantly higher in tumour than normal tissues (P <0.05).ConclusionsOur data indicated that the serum levels of CEACAM1 could discriminate lung cancer patients from health donors and that CEACAM1 might be a useful marker in early diagnosis of NSCLC. Moreover, our results showed that the expression patterns of CEACAM1 isoforms could be changed during oncogenesis, even when total CEACAM1 in tumour tissues did not show significant changes. Our study suggested that the expression ratios of CEACAM1-S/CEACAM1-L might be a better diagnostic indicator in NSCLC than the quantitative changes of CEACAM1.

Highlights

  • Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a multifunctional Ig-like cell adhesion molecule that has a wide range of biological functions

  • The functions of the 11 known CEACAM1 isoforms are divided based on the isoforms CEACAM1-L and CEACAM1-S, which are named based on the length of their cytoplasmic tail

  • The median serum CEACAM1 level was significantly higher in patients with non-small-cell lung carcinomas (NSCLC) compared with normal healthy controls (P < 0.0001; Figure 2A)

Read more

Summary

Introduction

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a multifunctional Ig-like cell adhesion molecule that has a wide range of biological functions. The serum CEACAM1 expression in non-small-cell lung carcinomas (NSCLC) is unclear. The different expression ratio of CEACAM1-S and CEACAM1-L isoform has seldom been investigated in NSCLC. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a single-pass transmembrane type I glycoprotein, belongs to the carcinoembryonic antigen (CEA) family. This protein is widely expressed in a variety of proliferating and quiescent epithelial, endothelial, and haematopoietic cells [2]. The L-form contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs), whereas the S-form does not Both isoforms are co-expressed in most CEACAM1-expressing tissues, and the ratio between the two isoforms determines the signalling outcome [8,9,10,11,12]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.