Abstract

Massively parallel sequencing (MPS), alias next-generation sequencing, is making its way from research laboratories into applied sciences and clinics. MPS is a framework of experimental procedures which offer possibilities for genome research and genetics which could only be dreamed of until around 2005 when these technologies became available. Sequencing of a transcriptome, exome, even entire genomes is now possible within a time frame and precision that we could only hope for 10 years ago. Linking other experimental procedures with MPS enables researchers to study secondary DNA modifications across the entire genome, and protein binding sites, to name a few applications. How the advancements of sequencing technologies can contribute to transplantation science is subject of this discussion: immediate applications are in graft matching via human leukocyte antigen sequencing, as part of systems biology approaches which shed light on gene expression processes during immune response, as biomarkers of graft rejection, and to explore changes of microbiomes as a result of transplantation. Of considerable importance is the socio-ethical aspect of data ownership, privacy, informed consent, and result report to the study participant. While the technology is advancing rapidly, legislation is lagging behind due to the globalisation of data requisition, banking and sharing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.