Abstract

This study was to investigate the expression pattern, mechanisms and clinicopathological implications of miR-193a-3p in colorectal cancer. Fresh-frozen tissues from 70 matched colorectal adenocarciomas and the adjacent non-neoplastic mucosae were prospectively collected. Two colorectal cancer cell lines (SW480 and SW48) and a non-neoplastic colon cell line (FHC) were also used. The expression levels of miR193a-3p in the cells and tissues were measured by quantitative real-time polymerase chain reaction. The expression of KRAS protein as a predicted downstream target for miR-193a was studied by immunohistochemistry. Restoration of the miR-193a level in the cell lines by permanent transfection was achieved and multiple functional and immunological assays were performed to analyze the functions of miR-193a in vitro. Down-regulation of miR-193a-3p was noted in 70% of the colorectal cancer tissues when compared to non-neoplastic colorectal tissues. In addition, down-regulation of miR-193a was significantly correlated with carcinoma of early stages (P<.05). Significant inverse correlation between miR-193a-3p and its target KRAS protein was determined (P<.05). Overexpression of miR-193a in colon cancer cells resulted in reduced cell proliferation, increased apoptosis, induced significant changes in cell cycle events and decreased the expression of epithelial-mesenchymal transition marker TWIST. This study confirms the tumor suppressor roles of miR-193a-3p, its downstream target affinity to KRAS and clinical significance in patients with colorectal adenocarcinoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call