Abstract

BackgroundThe presence of a southeast to northwest gradient across Europe in human genetic diversity is a well-established observation and has recently been confirmed by genome-wide single nucleotide polymorphism (SNP) data. This pattern is traditionally explained by major prehistoric human migration events in Palaeolithic and Neolithic times. Here, we investigate whether (similar) spatial patterns in human genomic diversity also occur on a micro-geographic scale within Europe, such as in the Netherlands, and if so, whether these patterns could also be explained by more recent demographic events, such as those that occurred in Dutch population history.MethodsWe newly collected data on a total of 999 Dutch individuals sampled at 54 sites across the country at 443,816 autosomal SNPs using the Genome-Wide Human SNP Array 5.0 (Affymetrix). We studied the individual genetic relationships by means of classical multidimensional scaling (MDS) using different genetic distance matrices, spatial ancestry analysis (SPA), and ADMIXTURE software. We further performed dedicated analyses to search for spatial patterns in the genomic variation and conducted simulations (SPLATCHE2) to provide a historical interpretation of the observed spatial patterns.ResultsWe detected a subtle but clearly noticeable genomic population substructure in the Dutch population, allowing differentiation of a north-eastern, central-western, central-northern and a southern group. Furthermore, we observed a statistically significant southeast to northwest cline in the distribution of genomic diversity across the Netherlands, similar to earlier findings from across Europe. Simulation analyses indicate that this genomic gradient could similarly be caused by ancient as well as by the more recent events in Dutch history.ConclusionsConsidering the strong archaeological evidence for genetic discontinuity in the Netherlands, we interpret the observed clinal pattern of genomic diversity as being caused by recent rather than ancient events in Dutch population history. We therefore suggest that future human population genetic studies pay more attention to recent demographic history in interpreting genetic clines. Furthermore, our study demonstrates that genetic population substructure is detectable on a small geographic scale in Europe despite recent demographic events, a finding we consider potentially relevant for future epidemiological and forensic studies.

Highlights

  • The presence of a southeast to northwest gradient across Europe in human genetic diversity is a well-established observation and has recently been confirmed by genome-wide single nucleotide polymorphism (SNP) data

  • With this study we aim to investigate whether spatial patterns in genomic diversity can be detected on a micro-geographic scale, within a European country like the Netherlands, and if so, whether these patterns could be explained by more recent demographic events

  • We have shown that despite the genetic differentiation between Dutch individuals and subpopulations sampled systematically across the country being very small, the overall genome-wide diversity tends to correlate statistically significantly with geography and that the genomic map of the Netherlands resembles the geographic map of sampling locations in all dedicated analyses we performed

Read more

Summary

Introduction

The presence of a southeast to northwest gradient across Europe in human genetic diversity is a well-established observation and has recently been confirmed by genome-wide single nucleotide polymorphism (SNP) data. In the case of autosomal markers, a southeast to northwest gradual change in the distribution of the genetic diversity has been reported using principal component analysis (PCA) [1,2] This gradient was described from classical markers such as blood groups [1], and later was confirmed by genome-wide single nucleotide polymorphisms (SNPs) [3,4]. This genetic diversity cline is traditionally explained by several major prehistoric demographic events in Europe: the first colonization of Europe by anatomically modern humans together with a postglacial re-expansion from the southern European refugee areas in Palaeolithic times, and the introduction of the Neolithic agricultural lifestyle by people from the Near East [1]. With this study we aim to investigate whether (similar) spatial patterns in genomic diversity can be detected on a micro-geographic scale, within a European country like the Netherlands, and if so, whether these patterns could be explained by more recent demographic events

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call