Abstract

Climbing fibers (CFs) from the inferior olive (IO) make strong excitatory synapses onto cerebellar Purkinje cell (PC) dendrites, and trigger distinctive responses known as complex spikes (CSs). We find that in awake mice, a CS in one PC suppresses conventional simple spikes (SSs) in neighboring PCs for several milliseconds. This involves a novel ephaptic coupling, in which an excitatory synapse generates large negative extracellular signals that nonsynaptically inhibit neighboring PCs. The distance dependence of CS-SS ephaptic signaling, combined with the known CF divergence, allows a single IO neuron to influence the output of the cerebellum by synchronously suppressing the firing of potentially over one hundred PCs. Optogenetic studies in vivo, and dynamic clamp studies in slice, indicate that such brief PC suppression, either as a result of ephaptic signaling or other mechanisms, can effectively promote firing in neurons in the deep cerebellar nuclei with remarkable speed and precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.