Abstract
The cerebellum fine-tunes motor activity via its Purkinje cell output. Purkinje cells produce two different types of spikes, complex spikes and simple spikes, which often show reciprocal activity:a periodical increase in complex spikes is associated with a decrease in simple spikes, and vice versa. This reciprocal firing is thought to be essential for coordinated motor behavior, yet how it is accomplished is debated. Here, we show in Ptf1a::cre;Robo3(lox/lox) mice that selectively rerouting the climbing fibers from a contralateral to an ipsilateral projection reversed the complex-spike modulation during sensory stimulation. Strikingly, modulation of simple spikes, which is supposed to be controlled by mossy fibers, reversed as well. Climbing fibers enforce this reciprocity in part by influencing activity of inhibitory interneurons, because the phase of their activity was also converted. Ptf1a::cre;Robo3(lox/lox) mice showed severe ataxia highlighting that climbing fiber input and its impact on reciprocity of Purkinje cell firing play an important role in motor coordination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.