Abstract

Records of the declination (D) magnetic field data for the year 2009 from the Magnetic Data Acquisition System (MAGDAS) facilities at University of Ilorin were employed for this work. From the minutes value of the D-component, the deduced hourly values of the D-component (Sq(QD)) were used to estimate its diurnal (Sq(D)) values with the most five quietest days identified. The monthly mean (MSq(D)) of the most five quietest days and their seasonal (SSq(D)) variabilities were investigated. The inter-hemispheric field aligned currents (IHFACs) exhibit downward and upward inter-hemispheric field-aligned sheet current that appears as a pair at all local times of the Sq(D), MSq(D), and SSq(D) variations. From these variabilities, the IHFACs were observed to flow from the winter to summer hemisphere during noon and dusk sector and flowing in opposite direction during the dawn sector. The Sq(D) variability patterns that were observed in May, June, August September are gentle compared to the disturbed variabilities in January, February, March and November. The highest positive (∼1.7arc-min) and negative (∼−2.7arcmin) MSq(D) maxima values were observed in August during the dawn and noon sectors respectively. These values indicated that the IHFACs flow in August is strongly southbound (positive) and northbound (negative) in the dawn and noon sectors respectively. Dusk-side IHFACs as can be observed by MAGDAS are weakly northbound in all the seasons. The direction of IHFACs does not flip at the equinoxes but in June and November and does not become largest at solstices but in August. The IHFACs was observed to exhibit longitudinal variability, which indicated that larger amplitude of winter-to-summer IHFACs is observed to be greater in June solstice (northbound/negative IHFACs) than in the December solstice (southbound/positive IHFACs) during the noon sector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call