Abstract
Although the horizontal density structures of the polar ionosphere have been extensively studied mostly using the F-region peak density or total electron content, there are relatively few studies on the vertical density structures. In this review, we present the climatology of the polar ionospheric density not only in the F-region but also in the E-region and topside ionosphere, in comparison with the mid-latitude ionosphere, using long-term incoherent scatter radar (ISR) observations at Millstone Hill, Tromsø, and Svalbard. The ISR data during the period of 1995–2015 are analyzed to study on the variations with local time, season, and solar/geomagnetic activity. The diurnal variations of the F-region density are much smaller in the polar region than in the mid-latitude, particularly in summer. At Svalbard, there is a characteristic double-peak structure in the diurnal variation of the polar ionosphere in winter only for high solar activity. The diurnal variation of hmF2 decreases with increasing latitude and eventually disappears at Svalbard for low solar activity but the hmF2 and its diurnal variations in the polar ionosphere are remarkably enhanced for high solar activity. The distinctive irregularity in the mid-latitude F1-layer nearly disappears in the polar region, especially at Svalbard. The anomalous seasonal variations of the F-region density are less evident in the polar ionosphere especially for low solar activity and for high magnetic activity conditions. The polar E-region density shows characteristic nighttime peaks induced by auroral precipitation but it does not necessarily increase with solar activity. The topside ionospheric density variations are much stronger in the polar region for high solar activity. Finally, it is found that the polar ionospheric density profiles more strongly respond to increasing solar activity as well as the magnetic activity compared with the mid-latitude ionosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.