Abstract

Abstract. In this work, we have performed a study for the first time on the climatology of the intermediate descending layers (ILs) over Brazilian equatorial and low-latitude regions during the extreme solar minimum period of 2009. The result of this study shows that the occurrence frequency of the ILs is very high, being > 60 % over São Luís (2∘ S, 44∘ W; inclination: −3.8∘) and > 90 % in Cachoeira Paulista (22.42∘ S, 45∘ W; inclination: −33.5∘). In most cases the ILs occur during the day at altitudes varying from 130 to 180 km and they may descend to lower altitudes (∼100 km) in a time interval of a few minutes to hours. The main driving force for the ILs at the low-latitude region, may be considered to be the diurnal tide (24 h) followed in smaller dominance by the semidiurnal (12 h), terdiurnal (8 h) and quarter-diurnal (6 h) components. In the magnetic equatorial sector, similar behavior was seen, with the exception of the semidiurnal tide, which in general does not appear to have influenced the IL's dynamics (except in summer). Additionally, the IL mean descent velocity over São Luís and Cachoeira Paulista shows a day-to-day variability that may be associated with a wave-like perturbation with a periodicity of some days. Some peculiarities in the IL dynamics were noted, such as the presence of the ILs during the night hours. Ascending and descending ILs appeared to have been formed from some connection with the ionospheric F layer. Quite often, these characteristics are observed in the presence of strong signatures of the gravity wave propagation as suggested by the F layer traces in the ionogram. The descending intermediate layer over Brazil appears to have been formed through a process of F1 layer base detachment. An interesting case study showed that an ascending ILs, initially detected at ∼130 km, reached the base of the F2 layer, due probably to the gravity wave propagation and/or the effect of a prompt penetration electric field.

Highlights

  • The first observations on the existence of intermediate layers were reported in 1930s (Schafer and Goodall, 1933; Appleton, 1933; Ratcliffe and White, 1933)

  • We present for the first time the climatology of the intermediate layers over the equatorial and lowlatitude locations in Brazil during a period of extremely low solar activity

  • The percentage occurrence was calculated by dividing the number of the days in which ascending or descending intermediate layers were detected by the number of days of available data

Read more

Summary

Introduction

The first observations on the existence of intermediate layers were reported in 1930s (Schafer and Goodall, 1933; Appleton, 1933; Ratcliffe and White, 1933). It was observed that this ionization layer, which is located between the E and F1 layers, occurred regularly in the height region of around 130– 150 km. Shen et al (1976), observed that the ILs over Arecibo lasted for several hours. They mentioned that in the valley region, the peak electron density of the layer ranged from ∼ 3 × 102 to 1 × 103 cm−3

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call