Abstract

Abstract We have published a recent paper on differences between temperature fluctuations of various vertical scales in raw and processed U.S. high vertical resolution radiosonde data (HVRRD). In that paper, we note that the small-scale temperature fluctuations in the raw U.S. HVRRD are significantly larger than those in the processed U.S. HVRRD and that those small-scale temperature fluctuations are much larger during daytime that during nighttime. We believe that this is due to the varying amount of solar radiation falling on the radiosonde temperature sensor as the radiosonde instrument swings and rotates. In light of these new results, we present revisions to some of our conclusions about the climatology of atmospheric unstable layers. When we repeat our calculations of atmospheric unstable layers using the processed U.S. HVRRD, we find the following. 1) The 0000/1200 UTC differences in unstable layer occurrences in the lower stratosphere that were noted in our earlier paper essentially disappear. 2) The “notch” in the deep tropics where there is a relative deficiency of thin unstable layers and a corresponding excess of thicker layers is still a feature when processed data are analyzed, but the daytime notch is less marked when the processed data were used. 3) The discontinuity in unstable layer occurrences, when there was a change in radiosonde instrumentation, is still present when processed data are analyzed, but is diminished from what it was when the raw data were analyzed. Significance Statement In a previous paper deriving the climatology of atmospheric unstable layers, we emphasized several findings. We reexamine three of the main points of that paper when processed U.S. high vertical resolution radiosonde data are analyzed instead of the raw data used in that previous paper. We find the 0000/1200 UTC differences virtually disappear in the new analysis. We find that the “notch” feature previously noted at Koror still exists, and we find that the discontinuity in unstable layers, when radiosonde instrumentation is changed, is diminished, but is still present in the new analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.