Abstract

A large amount of nutrient and chlorophyll data from the North Sea were compiled and organised in a research data base to produce annual cycles on a relatively fine spatial resolution of 1° in each horizontal direction. The data originate from many different sources and were partly provided by the ECOMOD data base of the Institut fur Meereskunde in Hamburg and partly by ICES in Copenhagen to cover the time range from 1950 to 1994. While the annual cycles of nutrients and chlorophyll derived for the continental coastal zone are representative for the decade 1984–1993 only, those for the remaining parts of the North Sea may be considered climatological annual cycles based on data from more than four decades. The composite data set of climatological annual cycles of medians and their climatological ranges is well suited to serve for validational and forcing purposes for ecosystem models of the North Sea, which have a resolution larger than or equal to 1° in both longitude and latitude. The annual cycles of the macronutrients and chlorophyll presented here for 1° × 1° squares in the North Sea show especially that sufficient observational data exist to provide initial, forcing and validational data for the simulations with the 130-box setup (ND130) of the ecosystem model ERSEM. The annual cycles presented give a clear picture for the whole of the North Sea. The highest concentrations occur at the continental coasts as a result of continued river input, which is added to the ongoing atmospheric input over the North Sea. Also, from the Atlantic Ocean water with relatively high nutrient concentrations enters the North Sea via the northern boundary. In the productive areas on and around the Dogger Bank nutrient concentrations are lower than in the other parts of the North Sea, even in winter. The areas with seasonal stratification have very different annual cycles in the upper (0–30 m) and lower layers (30 m-bottom). The shallow boxes are fully mixed and exhibit a relatively fast increase of nutrient concentrations caused by summer regeneration of nutrients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.