Abstract

ABSTRACTSamples of conserved archaeological wood of different ages, origins, and conservation histories were aged in a climate chamber for seven months, while the humidity alternated between 30% RH for 12 hours and 80% RH for 12 hours at a constant temperature of 30°C. Photographs were taken once every hour, which enabled the creation of a time-lapse movie. Some samples degraded visibly, whereas others were unaffected. Most of the samples were robust and would be able to survive well even in a very poor museum climate. Among the sensitive samples, three types of degradation were identified, namely disintegration, pyrite oxidation, and efflorescence of white crystals. Disintegration was ascribed to dimensional changes caused by the RH alternations in very fragile wood. The white efflorescence was interpreted as the recrystallization of an alum-associated substance, possibly mercallite (KHSO4). The pyrite oxidation was observed as the efflorescence of a thick yellow, grey, and green powder. Characterization of selected samples was performed using X-ray fluorescence spectrometry, X-ray diffraction spectrometry, scanning electron microscopy with energy dispersive X-ray spectroscopy, inductively coupled plasma – optical emission spectroscopy, Fourier transform infrared spectroscopy, ionic conductivity – liquid chromatography, and pyrolysis-gas chromatography-mass spectrometry with in situ silylation using hexamethyldisilazane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.