Abstract

Ecological networks exhibit non-random structural patterns, such as modularity and nestedness, which determine ecosystem stability with species diversity and connectance. Such structure-stability relationships are well known. However, another important perspective is less well understood: the relationship between the environment and structure. Inspired by theoretical studies that suggest that network structure can change due to environmental variability, we collected data on a number of empirical food webs and mutualistic networks and evaluated the effect of climatic seasonality on ecological network structure. As expected, we found that climatic seasonality affects ecological network structure. In particular, an increase in modularity due to climatic seasonality was observed in food webs; however, it is debatable whether this occurs in mutualistic networks. Interestingly, the type of climatic seasonality that affects network structure differs with ecosystem type. Rainfall and temperature seasonality influence freshwater food webs and mutualistic networks, respectively; food webs are smaller, and more modular, with increasing rainfall seasonality. Mutualistic networks exhibit a higher diversity (particularly of animals) with increasing temperature seasonality. These results confirm the theoretical prediction that the stability increases with greater perturbation. Although these results are still debatable because of several limitations in the data analysis, they may enhance our understanding of environment-structure relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call