Abstract

The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2 ) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2 . We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4 ) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2 O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2 -induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2 -induced rise in soil CH4 and N2 O emissions (2.76 Pg CO2 -equivalent year-1 ) could negate soil C enrichment (2.42 Pg CO2 year-1 ) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year-1 ) under elevated CO2 . Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.