Abstract

The long‐lasting 1783–1784 CE Laki flood lava eruption in Iceland released around 120 Tg of sulfur dioxide into the upper troposphere/lower stratosphere. Northern Hemisphere temperature proxy records of the 1780s indicate below‐average temperatures for up to three years following the eruption. The very warm summer of 1783 in Europe, which was followed by a very cold winter, may have been caused by the eruption, but the mechanisms are not yet well understood. Some studies attributed the cold winter 1783–1784 to natural variability of climate. However, our climate model simulations show that the Laki radiative effects lasted long enough to contribute to the winter cooling. We suggest that sulfur isotopic composition measurements obtained using samples from Greenland ice cores do not provide evidence of either a short‐lived volcanic aerosol cloud or a short‐lived climatic impact of the Laki eruption. In fact, the applicability of mass‐independent sulfur isotopic composition measurements for interpreting the climatic impact of any high‐latitude eruption remains yet to be demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.