Abstract

Climate oscillations have significantly contributed to the planet's evolution, including volcanic activity. Major glaciations have been considered not only as a triggering mechanism for large magmatic eruptions but also inducing volcano instability. Generally, volcano instability can be inferred from detailed volcanological and structural studies of a volcano and its associated depositional sequence, but the triggering mechanism has been always difficult to infer. In this paper, we present evidence of how climatic variations during the Late Pleistocene could have forced sector collapses of the main Mexican stratovolcanoes and enhanced the mobility of associated massive flows inducing the transformation of debris avalanche into debris flows. In particular, the climatic record based on atmospheric moisture content from robustly dated lake record from Guatemala and a U/Th dated speleothem from New Mexico are used here as indicators of summer and winter precipitation. Depositional sequences associated with Late Pleistocene sector collapses of Volcán de Colima, Nevado de Toluca, Citlaltépetl (Pico de Orizaba) and Cofre de Perote volcanoes are here analyzed. Comparing the timing of the event with the climatic record, a combination of summer and/or winter pluvial conditions could have forced and triggered the failure of already unstable volcanoes, even during glacier advances (as for the Citlaltépetl event). Independent of the main cause of the volcano instability (magmatic or tectonic) it is important to highlight that the climatic factor played an important role in enhancing the volcano instability and promoted the lateral transformation of debris avalanches, which under dry conditions would have affected more limited areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.