Abstract

To establish the direct climatic and environmental effect of anthropogenic aerosols in East Asia in winter under external, internal, and partial internal mixing (EM, IM and PIM) states, a well-developed regional climate–chemical model RegCCMS is used by carrying out sensitive numerical simulations. Different aerosol mixing states yield different aerosol optical and radiative properties. The regional averaged EM aerosol single scattering albedo is approximately 1.4 times that of IM. The average aerosol effective radiative forcing in the atmosphere ranges from −0.35 to +1.40 W/m2 with increasing internal mixed aerosols. Due to the absorption of black carbon aerosol, lower air temperatures are increased, which likely weakens the EAWM circulations and makes the atmospheric boundary more stable. Consequently, substantial accumulations of aerosols further appear in most regions of China. This type of interaction will be intensified when more aerosols are internally mixed. Overall, the aerosol mixing states may be important for regional air pollution and climate change assessments. The different aerosol mixing states in East Asia in winter will result in a variation from 0.04 to 0.11 K for the averaged lower air temperature anomaly and from approximately 0.45 to 2.98 μg/m3 for the aerosol loading anomaly, respectively, due to the different mixing aerosols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call