Abstract

Climatic effects on breeding phenology vary across organisms and therefore might promote a phenological mismatch in ecologically interacting species, including those engaged in coevolutionary interactions such as brood parasites and their hosts. Recent studies suggest that climatic induced changes in migration phenology may have mismatched cuckoos and their hosts in Europe. However, it is currently unknown whether cuckoo–host phenological mismatch results from different degrees of phenotypic plasticity or to different speeds of microevolutionary processes affecting hosts and parasites. Here we performed 1) cross‐sectional correlations between climate conditions and population level of phenological mismatch between the migratory brood parasite great spotted cuckoo Clamator glandarius and its main resident host in Europe, the magpie Pica pica; and 2) a longitudinal analysis to study within‐individual variation in breeding phenology for individual hosts experiencing different climate conditions over a period of nine years (2005–2013). Cross‐sectional analyses revealed independent and contrary effects of winter and spring temperature on magpie phenology: magpie hosts tend to breed earlier those years with lower February temperatures, however, high temperature in the first half of April spur individuals to lay eggs. Breeding phenology of cuckoos was tuned to that of their magpie host in time and duration. However, annual phenological mismatch between cuckoos and magpie hosts increased with NAO index and January temperature. Longitudinal analyses revealed high individual consistency in magpie host phenology, but a low influence of climate, suggesting that the climatic‐driven phenological mismatch between cuckoos and magpies at the population‐level cannot be explained by a host plastic response to climatic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.