Abstract

Human-induced climate change is causing rapid melting of ice in many volcanically active regions. Over glacial-interglacial time scales changes in surface loading exerted by large variations in glacier size affect the rates of volcanic activity. Numerical models suggest that smaller changes in ice volume over shorter time scales may also influence rates of mantle melt generation. However, this effect has not been verified in the geological record. Furthermore, the time lag between climatic forcing and a resultant change in the frequency of volcanic eruptions is unknown. We present empirical evidence that the frequency of volcanic eruptions in Iceland was affected by glacial extent, modulated by climate, on multicentennial time scales during the Holocene. We examine the frequency of volcanic ash deposition over northern Europe and compare this with Icelandic eruptions. We identify a period of markedly reduced volcanic activity centered on 5.5–4.5 ka that was preceded by a major change in atmospheric circulation patterns, expressed in the North Atlantic as a deepening of the Icelandic Low, favoring glacial advance on Iceland. We calculate an apparent time lag of ∼600 yr between the climate event and change in eruption frequency. Given the time lag identified here, increase in volcanic eruptions due to ongoing deglaciation since the end of the Little Ice Age may not become apparent for hundreds of years.

Highlights

  • The link between large-scale ice mass decline and an increase in volcanic eruptions at the end of the last glacial period, ca. 12 ka, is well established (Jull and McKenzie, 1996; Maclennan et al, 2002)

  • 2; Table DR1 in the GSA Data Repository1). We use these data sets to examine whether there is evidence for changes in volcanic activity related to climate-driven changes in ice cover over Holocene time scales

  • Cross-correlation analysis was conducted on Na+ data from the Greenland Ice Sheet Project 2 (GISP2) ice core, a proxy for the depth of the Icelandic Low (Mayewski et al, 1997), and Icelandic eruption and NEVA data, which were split into 100 yr bins; the Na+ data were averaged into 100 yr bins

Read more

Summary

Introduction

The link between large-scale ice mass decline and an increase in volcanic eruptions at the end of the last glacial period, ca. 12 ka, is well established (Jull and McKenzie, 1996; Maclennan et al, 2002). INTRODUCTION The link between large-scale ice mass decline and an increase in volcanic eruptions at the end of the last glacial period, ca.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.