Abstract

Oases, as complex geographical landscapes, are strongly influenced by both natural variation and human activities. However, they have degenerated because of unplanned land use and water resource development. The research of oasis changes has mostly discussed single components, but multiple components, especially spatial changes to oasis vegetation, need further strengthening. Land use and NDVI were extracted based on Landsat 5/8 and Mod13A3, respectively, and a transfer matrix was constructed to analyze changes of land use in the Hexi Corridor during 2000–2020. The significant changes in the area of each land use were also quantified. Combined with regional temperature and precipitation, interpolated from meteorological data, the correlations between regional temperature, precipitation, and vegetation coverage were calculated, especially in the quantized areas with significant associations. The results showed that the area of bare land or desert decreased, while the areas of agricultural and residential land increased. The normalized difference NDVI of the studied oases increased at the rate of 0.021 per decade, which was positively related to precipitation (p < 0.05), rather than temperature; of which, farmland and planted grass land were 55.65% and 33.79% in the significantly increased area. In the area of significant positive relation between NDVI and precipitation, the ratio of grassland, farmland, and forest was 79.21%, 12.82%, and 4.06%, respectively. Additionally, changes in oasis vegetation were determined primarily by agricultural activities, which reflected a combination of natural and anthropic influences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call