Abstract

Results of clay mineralogy, major element geochemistry, and Sr and Nd isotopes in 93 argillaceous samples collected from drainage basins of the Pearl, Red, and Mekong rivers reveal different degrees of chemical weathering in Southeast Asia despite similar climate conditions across these regions. The kaolinite/illite ratio, illite chemistry index, and illite crystallinity can be used as indicators of chemical weathering intensity. These mineralogical proxies combined with the K2O/(Na2O + CaO) molar ratio, chemical index of alteration (CIA), and weathering trends observed from major element results indicate intensive silicate weathering in the Pearl River basin, moderate to intensive in the Mekong River basin, and moderate in the Red River basin. Although a significant modification of ɛNd(0) values in our riverine sediments during chemical weathering and transport is unlikely,87Sr/86Sr ratios are controlled by various states of chemical weathering of high‐Sr minerals such as plagioclase (rich in Na and Ca) with a linear decrease trend from the Pearl, Mekong, to Red river basins. Our results suggest that it is not the warm climate with heavy monsoon precipitation but tectonics playing the most significant role in controlling weathering and erosion processes in south China and Indochina Peninsula. Strong physical erosion caused by tectonic activities and river incision along the eastern margin of the Tibetan Plateau and along the Red River fault system is responsible for high contents of primary minerals in the lowlands of Red and Mekong river basins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call