Abstract

BackgroundFagus sylvatica forms the treeline across the Apennines mountain range, with an average elevation of 1589 m a.s.l. Previous studies evidenced that the current position of the treeline in the Apennines is heavily depressed as a result of a complex interaction between climatic factors and the past human pressure. In this study we correlated treeline elevation in the fifteen major mountain groups in the Apennines with selected climatic, geomorphological, and human disturbance variables in order to investigate in detail the site-specific features affecting the current treeline distribution.ResultsTreeline elevation was lowest in the North Italy (Apuan Alps), while the highest treeline was found in Central Italy (Simbruini). An absolute maximum treeline elevation of F. sylvatica exceeding 2000 m a.s.l. was found on 13 mountain peaks in Central and Southern Italy. Noteworthy, treeline elevation was largely lower on warmer south-facing slopes compared to northern slopes, with values several hundred meters lower in the Gran Sasso and Velino-Sirente. Although the causes of this pattern are still unknown, we argue that treeline elevation on south-facing slopes may be limited by the combination of climatic constraints (i.e. summer drought) and human disturbance. Evidence of a pervasive anthropogenic effect depressing treeline elevation was found in the North (Apuan Alps) Central (Gran Sasso, Velino-Sirente, Sibillini) and Southern part of Apennines (Pollino). By contrast, treeline elevation of the Laga, Simbruini, and Orsomarso mountain groups appears less affected by past anthropogenic disturbance. Finally, we recorded in the several mountain groups (i.e. Majella, Marsicani and Pollino) the coexistence of very depressed treelines just a few kilometers away from much higher treelines, among the highest ever recorded for F. sylvatica.ConclusionsFinally, we argue that F. sylvatica treeline across the Apennines is locally shaped both by the interaction of low temperatures experienced by the species in its earliest life stages in snow-free open spaces with summer soil water depletion and human disturbance.

Highlights

  • The treeline is a well identifiable ecological boundary representing the upper ecological limit for forest growth and development

  • The current analysis revealed that aspect greatly affected treeline elevation

  • We found very high values of Δ average treeline elevation (TLE) north – south in the Velino-Sirente, Matese, Apuan Alps and Gran Sasso with, instead, low values in the Tosco-Emiliano, Orsomarso, Picentini and especially Terminillo groups

Read more

Summary

Introduction

The treeline is a well identifiable ecological boundary representing the upper ecological limit for forest growth and development. It is widely agreed that temperature is the most important limiting factor for tree growth and development at high altitude (Körner and Paulsen 2004). At local scale interacts with mountain topography, soil quality, and biotic factors like herbivores and anthropogenic disturbance that may substantially change treeline shape and elevation (Macias-Fauria and Johnson 2013; Ameztegui et al 2016). In this regard, several studies have shown that drought, recurrent fire and logging can dramatically depress treeline elevation compared to the species potential based on climatic stress alone (Piper et al 2016; Bonanomi et al 2018). In this study we correlated treeline elevation in the fifteen major mountain groups in the Apennines with selected climatic, geomorphological, and human disturbance variables in order to investigate in detail the site-specific features affecting the current treeline distribution

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call