Abstract
The Solonker Suture Zone is commonly recognised as the location of the Late Permian to Early Triassic closure of the Palaeo-Asian Ocean in the southeastern segment of the Central Asian Orogenic Belt. However, the absence of typical suture-related features, as a consequence of uncommon collisional geometries, gave it a cryptic nature. Thus, the tectonic setting, which led to suturing, still remains enigmatic. A geochemical characterisation of Permian sedimentary and volcanic rocks across the suture was carried out. Supplemented with Hf and Nd isotopic analyses, this approach enables not only a better definition of such regional suture, but also estimates on the long-controversial issue of net crustal growth in accretionary tectonic environments.The results indicate short sedimentary transport distances between the arc basins and their provenances, of which the studied volcanic rocks were a major contributor. Similar enrichment and depletion patterns with respect to N-MORB and average continental crust further corroborate a close source–sediment relationship. Immobile element provenance analyses indicate that the active continental northern margin of the North China Craton was a major source for arc basins to the south of the Solonker Suture Zone. To its north, arc basins are interpreted to be sourced by a more complex mixture of provenances, e.g., the Baolidao volcanic arc suite and the heterogenous Precambrian basement of southern Mongolia. An overall collisional tectonic setting across the suture is recognised. The geochemical signature of sedimentary rocks to the south of the suture points at an active continental arc setting, whereas the bimodal geochemical distribution of the samples to the north shows a contemporaneous active oceanic island arc as well as a passive margin environment. These features favour a double-sided subduction of the Palaeo-Asian Ocean beneath the North China Craton and the Mongolian Arcs throughout the Palaeozoic, including back-arc basin opening north of the suture in the Permian.Analysis of Hf and Nd isotopic compositions revealed that magmas to the south were produced involving significant crustal contamination, thus having less radiogenic compositions. North of the suture, however, isotopic compositions tend to be more radiogenic, implying a more juvenile contribution. However, the bulk isotopic compositions are close to present-day CHUR, suggesting that crustal reworking appears to be equally balanced by juvenile addition during the Palaeozoic closure of the Palaeo-Asian Ocean across the Solonker Suture Zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.