Abstract

Records of Australian climate during Marine Isotope Stages 5 and 7 (130–71 and 243–191 ka) are rare, preventing detailed assessments of long-term climate, drivers and ecological responses across the continent over glacial-interglacial timescales. This study presents a geochemistry-based palaeoclimate record from Fern Gully Lagoon on North Stradbroke Island (also known as Minjerribah) in subtropical eastern Australia, which records climates in MIS 7a–c, MIS 5 and much of the Holocene, in addition to MIS 4 (71–57 ka), and parts of MIS 6, MIS 3 and MIS 2 (191–130, 57–29 and 29–14 ka). Indicators of inorganic sedimentation from a 9.5 m sediment core – focussed on high-resolution estimates of sediment geochemistry supported by x-radiography, inorganic content and magnetic susceptibility – were combined with a chronology consisting of six radiocarbon (14C) and thirteen single-grain optically stimulated luminescence (OSL) ages. Hiatuses occurred at ~178–153 ka, ~36–21 ka and ~7–2 ka and likely result from the wetland drying. Low values of locally sourced aeolian materials indicate a wet MIS 7a–c and early MIS 6 before a relatively dry MIS 5. Inorganic flux during the Holocene was up to four times greater than during MIS 5, consistent with long-term interglacial drying observed in other regions, most notably in central Australia. This study highlights the importance of employing a combination of multiple dating approaches and calibrated geochemical proxies to derive climate reconstructions and to identify depositional complexities in organic-rich wetland records.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call