Abstract

Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the “warm edges” of species’ ranges (i.e., lower latitudes and elevations), contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%), in animals than in plants (50% versus 39%), and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%). Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

Highlights

  • Anthropogenic climate change may be a major driver of biodiversity loss in the 100 years, but the possible impacts of climate change on species survival remain highly uncertain [1–3]

  • This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%), in animals than in plants (50% versus 39%), and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%). These results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the 100 years

  • The Web of Science was searched repeatedly between December 2014 and March 2016 using keywords related to climate change, range shifts, and local extinctions

Read more

Summary

Introduction

Anthropogenic climate change may be a major driver of biodiversity loss in the 100 years, but the possible impacts of climate change on species survival remain highly uncertain [1–3]. Modeling studies have predicted that various levels of species loss will result from this future climate change, ranging from 0% to >50% of all species currently known [3]. This uncertainty has many sources (e.g., different climate models and different hypotheses about species dispersal). One of the most important sources of uncertainty hinges on the details of how species respond to climate change. If species can evolve rapidly enough in response to changing climate, species extinctions due to climate change might be limited [5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call