Abstract

The ability to form cooperative societies may explain why humans and social insects have come to dominate the earth. Here we examine the ecological consequences of cooperation by quantifying the fitness of cooperative (large groups) and non-cooperative (small groups) phenotypes in burying beetles (Nicrophorus nepalensis) along an elevational and temperature gradient. We experimentally created large and small groups along the gradient and manipulated interspecific competition with flies by heating carcasses. We show that cooperative groups performed as thermal generalists with similarly high breeding success at all temperatures and elevations, whereas non-cooperative groups performed as thermal specialists with higher breeding success only at intermediate temperatures and elevations. Studying the ecological consequences of cooperation may not only help us to understand why so many species of social insects have conquered the earth, but also to determine how climate change will affect the success of these and other social species, including our own.DOI: http://dx.doi.org/10.7554/eLife.02440.001.

Highlights

  • Social animals, including humans and many insects, have come to dominate the earth, possibly because of their ability to form complex societies (Laland et al, 2001; Fuentes et al, 2010; Boyd et al, 2011; Wilson, 2012; Lucky et al, 2013)

  • We found that the probability of breeding successfully for small and large groups varied along the elevational gradient such that large groups performed as thermal generalists with similar breeding success at all elevations (Figure 6A) and air temperatures (Figure 6B), whereas small groups performed as thermal specialists with high breeding success only at intermediate elevations (Figure 6A) and air temperatures (Figure 6B)

  • There were no significant differences in breeding success between large and small groups at high elevations (Figure 6A) and low air temperatures (Figure 6B)

Read more

Summary

Introduction

Social animals, including humans and many insects, have come to dominate the earth, possibly because of their ability to form complex societies (Laland et al, 2001; Fuentes et al, 2010; Boyd et al, 2011; Wilson, 2012; Lucky et al, 2013). We examine how group-living impacts the generalist-specialist behavioral tradeoff and its subsequent effect on niche breadth (defined as a thermal performance that influences elevational distribution) in the facultative cooperatively breeding burying beetle (Nicrophorus nepalensis).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.