Abstract

In the context of global warming, it is of high importance to assess the influence of climatic change and geographic factors on the radial growth of high-elevation trees. Using tree-ring data collected from four stands of Qilian juniper (Juniperus przewalskii Kom.) across an altitudinal gradient in the central Qilian Mountains, northwest China, we compared the radial growth characteristics and climate–growth relationships at different elevations. Results indicated that there was little difference in the tree-ring parameters of the four chronologies. Correlation analyses both for unfiltered and 10-year high-passed data of monthly climatic variables and chronologies were presented to investigate the climatic forcing on tree growth, and results revealed that the correlation patterns were consistent among the four sites, especially for high-passed data. We employed the principal components analysis method to obtain the first principal component (PC1) of the four chronologies and computed the correlations between PC1 and climate factors. The PC1 correlated significantly with winter (November–January) temperature, prior August and current May temperature, and precipitation in the previous September and current January and April, indicating that tree growth in this region was mainly limited by cold winter temperature and drought in early growing season and prior growing season (prior August and September). However, the climate–growth relationships were unstable; with an increase in temperature, the sensitivity of tree growth to temperature had decreased over the past few decades. Considering the instability of the climate–growth relationships, climate reconstructions based on tree rings in the study area should be approached with more caution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call