Abstract
Climate change is expected to alter trophic interactions within food chains, but predicting the fate of particular species is difficult because the predictions hinge on knowing exactly how climate influences direct and indirect interactions. We used two complementary approaches to examine how climate change may alter trophic interactions within an old-field food web composed of herbaceous plants, grasshopper herbivores, and spider predators. We synthesized data spanning 15 years of experimentation during which interannual mean growing season temperature varied by 2 degrees C and precipitation by 2.5 cm. We also manipulated temperature within mesocosms to test the affect of temperature on primary production and strength of direct and indirect trophic interactions. Both approaches produced similar results: plant production was not directly affected by temperature or precipitation, but the strength of top-down indirect effects on grasses and forbs increased by 30-40% per 1 degrees C. Hence, the net effect of climate change was to strengthen top-down control of this terrestrial system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.