Abstract

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using experimentally parameterised and field-tested models, we show that climate change over the past 50 years increased the overwintering range of a global agricultural insect pest, the diamondback moth (Plutella xylostella), by ~2.4 million km2 worldwide. Our analysis of global data sets revealed that pesticide resistance levels are linked to the species’ overwintering range: mean pesticide resistance was 158 times higher in overwintering sites compared to sites with only seasonal occurrence. By facilitating local persistence all year round, climate change can promote and expand pesticide resistance of this destructive species globally. These ecological and evolutionary changes would severely impede effectiveness of current pest control efforts and potentially cause large economic losses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.