Abstract

Bivalve aquaculture is a major industry supporting food production in coastal areas. Although sea water temperature increase due to climate change is expected to affect marine ecosystems in a variety of ways, it is important to determine whether changes in water temperature and associated changes in the trophic conditions will enhance or inhibit the production of bivalves. In this study, I conducted a field survey of environmental factors and growth rates of the Pacific oyster (Magallana gigas) in the subarctic estuarine areas (Akkeshi-ko Lagoon and Akkeshi Bay) and evaluated the effects of climate warming using numerical simulations. In situ cage experiments with two different year-classes were conducted and oyster growth varied between the two stations in the 2nd year-class mainly in response to spatial variation in water temperature. A three dimensional physical-ecosystem coupled model including a growth model of oyster was applied and the model could reproduce the differences in present (the year 2014) growth patterns between stations. The climate warming scenarios showed that oyster production would increase in both lagoon and bay. However, the timing and location of weight loss due to spawning will differ, so caution will need to be exercised regarding the timing of the oyster harvest in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.