Abstract

The Maritime Continent (MC) consists of multiple islands with varying sizes and topography, and surrounding seas. It is characterized by rainfall (convection) variability on multiple spatial and temporal scales. Various large-scale atmospheric, oceanic, and coupled climate systems, such as the El Nino–Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Madden–Julian Oscillation (MJO), and cold surge, exert significant influences on the spatio-temporal complexity of the MC climate and climate variability. As a major tropical heat source located within the warmest oceanic area (the western Pacific warm pool), the MC has been identified as a region of great importance for climate variation on the global scale. However, prediction of climate variability over the MC and its surrounding areas and the relationships to large-scale atmospheric circulation patterns are big challenges, even for state-of-the-art climate models. In this paper, we provide a thorough review on current understanding of the spatiotemporal complexity and prediction of climate variability over this important region, and its influence on global climate variation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call