Abstract

A two-moving-layer model is used to examine the structure of the equatorial thermocline and its connection with the extratropical thermocline. It is found that cooling (warming) in extratropics generates a low (high) potential vorticity anomaly and induces downward (upward) movement of the thermocline, and the perturbation propagates to the equatorial thermocline, inducing a downward (upward) movement of the thermocline and intensification (weakening) of the undercurrent. Thus, surface cooling in the extratropics can induce warming of the equatorial thermocline. In addition, the total mass flux in the subsurface layer in the extratropics and the equatorial undercurrent is enhanced. Although in the extratropics perturbations generated by localized cooling (warming) are confined within the characteristic cone, defined by the unperturbed trajectories of the thermocline circulation, when these perturbations propagate into the equatorial region they are no longer confined by the characteristic cone in the meridional direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.