Abstract

AbstractThe temporal relationship between global glaciations and the Great Oxidation Event (GOE) suggests that climate change played an important role in Earth's oxygenation. The potential role of temperature is captured by the stratigraphic proximity between glacial deposits and sediments containing mass‐independent fractionation of sulfur isotopes (MIF‐S). We use a time‐dependent one‐dimensional photochemical model to investigate whether temperature changes associated with global glaciations can drive oscillations in atmospheric O2 levels and MIF‐S production across the GOE. We find that extreme climate change can cause atmospheric O2 to oscillate between pre (<10−6 times the present atmospheric level, PAL) and post‐GOE (>10−5 PAL) levels. Post‐glacial hot‐moist greenhouse climates lead to post‐GOE O2 levels because the abundant H2O vapor and oxidizing radicals drive the depletion of reduced species. This pattern is generally consistent with the MIF‐S signal observed in the sedimentary record, suggesting a link between global glaciations and O2 oscillations across the GOE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.