Abstract

<p>Volcanic eruptions are an important driver of climate variability. Multiple literature sources have shown that after large explosive eruptions there is a decrease in global mean temperature, caused by an increased amount of stratospheric aerosols which influence the global radiative budget. In this study, we investigate the changes in several climate variables after a volcanic eruption. Using ESMValTool (Earth System Model Evaluation Tool) on an ensemble of historical simulations from CMIP6, such variables as global mean surface temperature (GMST), Arctic sea ice area and Nino 3.4 index were analyzed following the 1883 Krakatoa eruption. While there is a definite decrease in the multi-model mean GMST after the eruption, other indices do not show as prominent change. The reasons for this behavior are under investigation. </p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.