Abstract

It is often known, from modelling studies, that a certain mode of climate tipping (of the oceanic thermohaline circulation, for example) is governed by an underlying fold bifurcation. For such a case we present a scheme of analysis that determines the best stochastic fit to the existing data. This provides the evolution rate of the effective control parameter, the variation of the stability coefficient, the path itself and its tipping point. By assessing the actual effective level of noise in the available time series, we are then able to make probability estimates of the time of tipping. This new technique is applied, first, to the output of a computer simulation for the end of greenhouse Earth about 34 million years ago when the climate tipped from a tropical state into an icehouse state with ice caps. Second, we use the algorithms to give probabilistic tipping estimates for the end of the most recent glaciation of the Earth using actual archaeological ice-core data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.