Abstract
Abstract. We present hourly climate data to force land surface process models and assessments over the Merced and Tuolumne watersheds in the Sierra Nevada, California, for the water year 2010–2014 period. Climate data (38 stations) include temperature and humidity (23), precipitation (13), solar radiation (8), and wind speed and direction (8), spanning an elevation range of 333 to 2987 m. Each data set contains raw data as obtained from the source (Level 0), data that are serially continuous with noise and nonphysical points removed (Level 1), and, where possible, data that are gap filled using linear interpolation or regression with a nearby station record (Level 2). All stations chosen for this data set were known or documented to be regularly maintained and components checked and calibrated during the period. Additional time-series data included are available snow water equivalent records from automated stations (8) and manual snow courses (22), as well as distributed snow depth and co-located soil moisture measurements (2–6) from four locations spanning the rain–snow transition zone in the center of the domain. Spatial data layers pertinent to snowpack modeling in this data set are basin polygons and 100 m resolution rasters of elevation, vegetation type, forest canopy cover, tree height, transmissivity, and extinction coefficient. All data are available from online data repositories (https://doi.org/10.6071/M3FH3D).
Highlights
The snowpack of the Sierra Nevada provides at least 40 % of California’s water supply (Roos, 1989) and has historically stored an amount of water equivalent to more than half of the available Sierra foothill reservoir storage (Bales et al, 2011a)
The purpose of this paper is to introduce climate, soil moisture, snow, and spatial data that may be used for hydrologic or land surface assessments and modeling in the Tuolumne and Merced watersheds in the Sierra Nevada of central California (Fig. 1; Tables 1, 2, 3)
The only two high-elevation gauges were at Tuolumne Meadows (TUM) and Virginia Lakes Ridge (VLR) and both were accumulation-type gauges equipped with pressure transducers
Summary
The snowpack of the Sierra Nevada provides at least 40 % of California’s water supply (Roos, 1989) and has historically stored an amount of water equivalent to more than half of the available Sierra foothill reservoir storage (Bales et al, 2011a). The purpose of this paper is to introduce climate, soil moisture, snow, and spatial data that may be used for hydrologic or land surface assessments and modeling in the Tuolumne and Merced watersheds in the Sierra Nevada of central California (Fig. 1; Tables 1, 2, 3). Climate data and snow and soil moisture measurements were derived from stations within and immediately adjacent to the basins. We describe data sources, processing, limitations, and where to obtain the data This data set complements stream and climate data compiled by Lundquist et al (2016) for the upper parts of both watersheds as a part of the Yosemite Hydroclimate Network as well as meteorological and lidar-derived snow depth data compiled for a related snow-modeling study by Hedrick et al (2018)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.