Abstract

The two-dimensional statistical dynamical climate model, recently developed at the Global Change Research Center (GCRC 2D climate model) is presented and discussed. The model solves the 2-D primitive equations in finite difference form (mass continuity, Newton's second law, and the first law of thermodynamics) for the prognostic variables zonal mean density, zonal mean zonal velocity, zonal mean meridional velocity, and zonal mean temperature on a grid that has 18 nodes in latitude and 9 vertical nodes (plus the surface). The equation of state, p = ρRT and an assumed hydrostatic atmosphere, δp = − ρgδz, are used to diagnostically calculate the zonal mean pressure and vertical velocity for each grid node, and the moisture balance equation is used to estimate the precipitation rate. The performance of the model at simulating the two-dimensional temperature, zonal winds, and mass stream function is discussed here. The strengths and weaknesses of the model are highlighted and plans for future model experiments and improvements are given. The parameterization of the transient eddy fluxes of heat and momentum developed by Stone and Yao (1987 and 1990) are used with small modifications. These modifications are shown to improve the performance of the model at simulating the observed climate system as well as increase the model's computational stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.