Abstract

Understanding how thermokarst lakes on arctic river deltas will respond to rapid warming is critical for projecting how carbon storage and fluxes will change in those vulnerable environments. Yet, this understanding is currently limited partly due to the complexity of disentangling significant interannual variability from the longer‐term surface water signatures on the landscape, using the short summertime window of optical spaceborne observations. Here, we rigorously separate perennial lakes from ephemeral wetlands on 12 arctic deltas and report distinct size distributions and climate trends for the two waterbodies. Namely, we find a lognormal distribution for lakes and a power‐law distribution for wetlands, consistent with a simple proportionate growth model and inundated topography, respectively. Furthermore, while no trend with temperature is found for wetlands, a statistically significant decreasing trend of mean lake size with warmer temperatures is found, attributed to colder deltas having deeper and thicker permafrost preserving larger lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.