Abstract

The southeastern border of the European Alps is not well resourced with high-resolution climate proxies and experiences a distinct climatic regime from the northern and western Alpine zones. Here, we present new high-resolution climatic proxies (AD 1907–2006) from ring widths and stable carbon (δ13C), non-exchangeable hydrogen (δ2H) and oxygen (δ18O) isotope ratios of cellulose extracted from Larix decidua tree rings, growing at the forest limit in the southeastern European Alps (Slovenia). δ13C, δ2H and δ18O are strongly (p 0.4; p < 0.001) with summer temperature and also sunshine hours, while precipitation has less impact. A combination of TRW and δ13C provides the greatest potential for reconstructing past temperatures (June–August) with significant (p < 0.001) correlations with gridded temperatures extending across a very large part of southern and western Europe west of the Carpathian Mountains. The water isotopes (oxygen and hydrogen) record conditions in the Adriatic and Mediterranean, which are the source area for the air masses that bring precipitation to this region giving strong correlations with temperatures in southern Italy and the western part of the Balkan Peninsula. Combining proxies with different spatial and temporal signals allows the strength and spatial footprint of climate signals to be enhanced. These findings open new perspectives for climate reconstruction in the southeastern European Alps and Western Balkans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call