Abstract
For all species, abiotic factors directly affect performance, survival and reproduction, and consequently, their geographic distribution. Species distribution models (SDMs) are important tools to predict the influence of abiotic factors in species distributions and has been more applied over the years. However, these models can be built under different algorithms and using different methods to select environmental predictors, which can lead to different results. Five different algorithms and two sets of environmental predictors were compared to predict the geographic distribution of the blowfly Sarconesia chlorogaster (Wiedemann) (Diptera: Calliphoridae). This species has several occurrence points and a considerable amount of biological data available, which makes S. chlorogaster a good model system to compare environmental predictors. Two sets of environmental predictors (mainly derived from temperature and humidity) were built, and the set based on the influence of abiotic variables on the ecophysiology of S. chlorogaster showed better results than the principal component analysis (PCA) approach using 19 climatic variables. We also employed five modeling algorithms-Envelope Score, Mahalanobis Distance, GARP, Support Vector Machines, and Maxent-and the latter two showed the best performances. The results indicate that temperature is the main factor shaping geographic distribution of S. chlorogaster through its effect on fitness. Furthermore, we showed that this species is mainly distributed in south, southeastern, and some northwestern and southwestern sites of South America. In addition, our results also predicted suitable areas in Ecuador and Colombia, countries without previous records.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.